На собесах любят спрашивать, что такое градиентный бустинг и причём здесь градиент.
Градиентный бустинг — это ансамблевый метод, то есть он комбинирует предсказания нескольких базовых моделей. В данном случае эти базовые модели (чаще всего деревья) строятся последовательно, и каждая новая учится исправлять ошибки предыдущих.
Всё начинается с простого предсказания начальной моделью целевой переменной. Затем вычисляется значение функции потерь (loss). Допустим, что предсказание первой модели на 5 больше настоящего значения. Если бы следующая новая модель выдавала ответ -5, то сумма ответов этих двух моделей оказалась бы идеальной. В реальности моделей может быть сколько угодно — строим до тех пор, пока не получим приемлемый результат.
Каждый очередной алгоритм в градиентном бустинге будет обучаться предсказывать отрицательный градиент (или антиградиент) функции потерь на основе предсказания предыдущей модели. Это позволяет обобщить метод на любую дифференцируемую функцию потерь. Конечным результатом будет взвешенная сумма результатов всех моделей.
На собесах любят спрашивать, что такое градиентный бустинг и причём здесь градиент.
Градиентный бустинг — это ансамблевый метод, то есть он комбинирует предсказания нескольких базовых моделей. В данном случае эти базовые модели (чаще всего деревья) строятся последовательно, и каждая новая учится исправлять ошибки предыдущих.
Всё начинается с простого предсказания начальной моделью целевой переменной. Затем вычисляется значение функции потерь (loss). Допустим, что предсказание первой модели на 5 больше настоящего значения. Если бы следующая новая модель выдавала ответ -5, то сумма ответов этих двух моделей оказалась бы идеальной. В реальности моделей может быть сколько угодно — строим до тех пор, пока не получим приемлемый результат.
Каждый очередной алгоритм в градиентном бустинге будет обучаться предсказывать отрицательный градиент (или антиградиент) функции потерь на основе предсказания предыдущей модели. Это позволяет обобщить метод на любую дифференцируемую функцию потерь. Конечным результатом будет взвешенная сумма результатов всех моделей.
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.
How Does Telegram Make Money?
Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.
Библиотека собеса по Data Science | вопросы с собеседований from hk